JOURNAL OF APPROXIMATION THEORY 29, 218-222 (1980)

Tchebycheff Subspaces of Periodic-Type Tchebycheff Spaces

EITAN LAPIDOT*

44a Eder Street, Haifa, Israel Communicated by Oved Shisha Received February 5, 1979

DEDICATED TO THE MEMORY OF P. TURÁN

Let Λ be an (m + 1)-dimensional Tchebycheff space of periodic-type functions. Then Λ contains an (m - 1)-dimensional Tchebycheff subspace. Consequently, Λ has a Markov-type property: it contains a chain of Tchebycheff spaces $\Lambda = \Lambda_m \supset \Lambda_{m-2} \supset ...$, with dim $\Lambda_i = i + 1$.

1. T-Spaces of Periodic Type

Let u_0 , u_1 ,..., u_m be defined and continuous on the interval [a, b], forming a Tchebycheff-system (abbr. T-system) on [a, b) and such that $u_i(b) = \alpha u_i(a)$ for some $\alpha \neq 0$ and i = 0, 1, ..., m ($m \ge 2$). We call such functions functions of periodic type. In particular, they are periodic or antiperiodic when $\alpha = +1$ or $\alpha = -1$, respectively. Since the determinant

$$U\begin{pmatrix} u_0 , u_1 , \dots, u_m \\ t_0 , t_1 , \dots, t_m \end{pmatrix} = \begin{vmatrix} u_0(t_0) & u_0(t_1) & \cdots & u_0(t_m) \\ u_1(t_0) & u_1(t_1) & \cdots & u_1(t_m) \\ \vdots & \vdots & & \vdots \\ u_m(t_0) & u_m(t_1) & \cdots & u_m(t_m) \end{vmatrix}$$

is positive whenever $a \leq t_0 < t_1 < \cdots < t_m < b$ and is continuous in t_m , and the functions involved are of periodic type, it is clear that $\{u_i\}_{i=0}^m$ forms a T-system on (a, b] and hence $(-1)^m \alpha > 0$.

We say that x is a nodal zero of f, in the interval (a, b), if f(x) = 0 and if $f(x_1) f(x_2) < 0$ whenever $x - \epsilon < x_1 < x < x_2 < x + \epsilon$ for some $\epsilon > 0$. If $f \in A_m = \text{span} \{u_0, u_1, ..., u_m\}$ on [a, b), we say that a is a nodal zero of f, if f(a) = 0 and if $\alpha f(x_1) f(x_2) < 0$ whenever $a < x_1 < a + \epsilon$ and $b - \epsilon < x_2 < b$ for some $\epsilon > 0$. All other zeros of f are called nonnodal zeros.

* The author wishes to express his gratitude to Professor Zvi Ziegler and to the Israeli National Academy of Sciences for their support (Grant 021/78/9).

Let $f \in A_m$. We extend f to [2a - b, 2b - a) by defining

$$ar{f}(t) = rac{1}{lpha} f(t+b-a), \qquad 2a-b \leqslant t < a, \ = f(t) \qquad a \leqslant t < b, \ = lpha f(t-b+a), \qquad b \leqslant t < 2b-a, \end{cases}$$

Clearly, the extended functions form a T-space (the span of a T-system) on every half-open interval of length b - a, contained in [2a - b, 2b - a).

LEMMA 1. Let $f \in A_m$, $f \neq 0$. The number of the zeros of f (in [a, b)), Z(f; [a, b)) is even or odd, according to m being even or odd (nonnodal zeros counted twice).

Proof. The claim of the lemma is clear if $f(a) \neq 0$. If f(a) = 0, then $\overline{f}(a - \epsilon) \neq 0$ for some $\epsilon > 0$ and $Z(f; [a, b]) = Z(\overline{f}; [a, b]) = Z(\overline{f}$

2. AN INTERPOLATION PROBLEM

We need the:

DEFINITION [2]. Let f be defined on a real set M and let t_1 , t_2 ,..., $t_k \in M$ with $t_1 < t_2 < \cdots < t_k$.

(i) $t_1, t_2, ..., t_k$ form an alternation of f, of length k, if $sgn f(t_i) = -sgn(f(t_{i+1})) \neq 0$, for i = 1, 2, ..., k - 1.

(ii) $t_1, t_2, ..., t_k$ form a quasialternation of f, of length k if $sgn(f(t_i) - f(t_{i+1})) = -sgn(f(t_{i+1}) - f(t_{i+2}))$, for i = 1, 2, ..., k - 2.

We also need the following results of Zielke [2, Lemmas 3, 5 and 7]:

Let $v_1 = 1, v_2, ..., v_{m+1}$ be continuous functions on (a, b), forming a CTsystem (Complete Tchebycheff-system) (i.e., $v_1, v_2, ..., v_r$ form a T-system for r = 1, 2, ..., m + 1) on this interval. v_2 is strictly increasing and hence $I = v_2((a, b))$ is an open interval and $f_1, f_2, ..., f_{m+1}$, defined by $f_i = v_i \circ v_2^{-1}$, i = 1, 2, ..., m + 1 form a CT-system on *I*. We have that $g_2 = Df_2 = 1$, $g_2 = Df_3, ..., g_{m+1} = Df_{m+1}$ is a CT-system on *I*, *D* being the right-hand side derivative.

Let $J = g_3(I)$, $h_i = g_i \circ g_3^{-1}$ and $J^* = (\inf J, \sup J)$. We extend the functions h_i , i = 2, 3, ..., m + 1, to \bar{h}_i on J^* [2, Lemma 5]. Every $\bar{h} \in \text{span} \{\bar{h}_2, \bar{h}_3, ..., \bar{h}_{m+1}\}$ has no alternation of length >m and since every $h \in \text{span} \{h_2, h_3, ..., h_{m+1}\}$ has no quasialternation of length >m and the extension of the h's is by linear segments, the same is true for the \bar{h} 's. Hence $D\bar{h}$ has no alternation of length >m - 1.

Finally, we define

$$D_1 v = D(v \circ v_2^{-1})$$

and

$$D_2 v = D\bar{h},$$

where $h = g \circ g^{-1}$ and $g = D_1 v$.

Let $\Lambda_m = \text{span}\{u_0, u_1, ..., u_m\}, m \ge 2$, be a T-space on [a, b) with $u_i(b) = \alpha u_i(a)$ for some $\alpha \ne 0$ and i = 0, 1, ..., m. We may assume that $u_i(a) = 0$ for i = 1, 2, ..., m and that $\{u_1, u_2, ..., u_m, u_m\}$ is a CT-system on (a, b). Define

$$v_i = \frac{u_i \mid (a,b)}{u_1 \mid (a,b)}, \quad \text{for } i = 1, 2, ..., m$$

and

$$v_{m+1} = \frac{u_0|_{(a,b)}}{u_1|_{(a,b)}}$$

LEMMA 2. Let v_1 , v_2 ,..., v_{m+1} be defined as above and let x, t_1 , t_2 ,..., t_{m-1} be m points in the interval (a, b) with $t_1 < t_2 < \cdots < t_{m-1}$. The trivial polynomial (in the v_i 's) is the only element of span $\{v_1, v_2, ..., v_{m+1}\}$ satisfying

- (1) $v(t_i) = 0, i = 1, 2, ..., m 1,$
- (2) $D_1v(x) = 0$, and
- (3) $D_2 v(x) = 0.$

Proof. Assume, to the contrary, that there exists a non-trivial polynomial, $v = \sum_{i=1}^{m+1} a_i v_i$ that satisfies (1), (2) and (3). Consider the polynomial $u = \sum_{i=0}^{m} a_i u_i$ (with $a_0 = a_{m+1}$). By Lemma 1, u vanishes at an additional point t_0 in [a, b), or, exactly one of its zeros is a nonodal one.

Assume, first, that $u(a) \neq 0$. We can split the interval $v_2((a, b))$ into m consecutive subintervals on which $f = v \circ v_2^{-1} = \sum_{i=1}^{m+1} a_i f_i$, is increasing and decreasing alternately, thus $D_1 v$ has an alternation of length m. By [2, Lemma 3] $D_1 v$ has no quasialternation of length >m and if $D_1 v$ is not identically zero (in which case v = 0), $D_2 v$ has an alternation of length m - 1. Since $D\bar{h}$ changes sign at points where \bar{h} is negative or positive, $D_2 v$ does not change sign at x. Let $s_1, s_2, ..., s_{m-2}$ be points in J^* such that in each of the intervals $(s_0, s_1), (s_1, s_2), ..., (s_{m-2}, s_{m-1})$ $(s_0 = \inf J$ and $s_{m-1} = \sup J$), $D\bar{h}$ is always nonnegative or nonpositive. $y = (g_3 \circ v_2)(x)$ belongs to one of them, say (s_j, s_{j+1}) , and assume for the sake of simplicity that $D\bar{h}$ is nonnegative on this interval. Clearly, there exist two points $s_j < y_1 < y < y_2 < s_{j+1}$, such that $D\bar{h}(y_1) > 0$ and $D\bar{h}(y_2) > 0$ and since $D\bar{h}(x) = 0$, $D\bar{h}$ has a quasialternation of length $\ge m + 1$. Hence v = 0.

220

If u(a) = 0, then $a_0 = 0$ $(a_{m+1} = 0)$ and the assertion holds in span $\{v_1 \mid (a,b), ..., v_m \mid (a,b)\}$.

3. THE MAIN RESULT

It is known that if Λ is an *n*-dimensional T-space on a set M, then Λ contains an (n-1)-dimensional T-space iff we can extend the elements of Λ to $M \cup \{x\}$, $x \notin M$ and the extended functions form a T-space on that set. This is not the case here. However, we show that we can, by adding a "double point" to [a, b], construct an (n - 2)-dimensional T-subspace.

THEOREM 1. Let $u_0, u_1, ..., u_m$ be defined and continuous on the interval [a, b], forming a T-system on [a, b), and such that $u_i(b) = \alpha u_i(a)$ for some $\alpha \neq 0$ and i = 0, 1, ..., m. The T-space, span $\{u_0, u_1, ..., u_m\}$ contains an (m-1)-dimensional T-subspace, on [a, b].

Proof. For m = 2, span $\{u_0, u_1, u_2\}$ contains a positive function on [a, b) so we assume $m \ge 3$.

We may assume that $u_i(a) = 0$ for i = 1, 2, ..., m and that

$$\{u_1 \mid (a,b), u_2 \mid (a,b), ..., u_m \mid (a,b), u_0 \mid (a,b)\}$$
 is a CT-system.

Define v_i , i = 1, 2, ..., m + 1 as in Lemma 2, and since $D_1v_1 = D_2v_2 = D_2v_1 = 0$ $D_1v_2 = 1$ and $D_2v_3 = 1$, we can define $\tilde{v}_1 = v_1$ and for $i \ge 4$, $\tilde{v}_1 = v_i - a_iv_2 - b_iv_3$ such that $D_1\tilde{v}_i(x) = D_2\tilde{v}_i(x) = 0$ for a given x, a < x < b.

The determinant of the interpolation problem of Lemma 2 does not vanish and hence

$$Uig(egin{smallmatrix} ilde v_1\,,\, ilde v_4\,,...,\, ilde v_{m+1}\ t_1\,,\,t_2\,,...,\,t_{m-1} \end{pmatrix}
eq 0$$

whenever $a < t_1 < t_2 < \cdots < t_{m-1} < b$, which implies

$$U\left(\frac{\tilde{u}_{1},\tilde{u}_{4},...,\tilde{u}_{m},\tilde{u}_{0}}{t_{1},t_{2},...,t_{m-2},t_{m-1}}\right)\neq 0,$$

 $\tilde{u}_1 = u_1 \text{ and } \tilde{u}_i = u_i - a_i u_2 - b_i u_3$, i = 0, 4, 5, ..., m.

 $\tilde{u}_1|_{((a,b)}, \tilde{u}_4|_{(a,b)}, ..., \tilde{u}_m|_{(a,b)}$ and $\tilde{u}_0|_{(a,b)}$ form a T-system on (a, b). We can extend these functions to [a, b) and the extended functions will form T-system on this interval [1]. This extension is continuous, as will be shown in Theorem 3 and hence, span { $\tilde{u}_0, \tilde{u}_1, \tilde{u}_4, ..., \tilde{u}_m$ } is a T-space on [a, b).

THEOREM 2. Let u_0 , u_1 ,..., u_m be as in Theorem 1 and $A_m =$

EITAN LAPIDOT

span $\{u_0, u_1, ..., u_m\}$. There exists a chain of T-spaces: $\Lambda_m \supset \Lambda_{m-2} \supset \cdots \supset \Lambda_{i_0}$ $(i_0 = 0, 1, according to m being even or odd)$ with dim $\Lambda_i = i + 1$.

THEOREM 3. Let u_0 , u_1 ,..., u_m be continuous functions on [a, b), forming a T-system on this interval. If $A_m = \text{span} \{u_0, u_1, ..., u_m\}$ does not contain an m-dimensional T-subspace then it contains an (m - 1)-dimensional one.

Proof. As in [1] we define $w(t) = \max_{0 \le i \le m} |u_i(t)|$, $a \le t < b$, and $v_i(t) = u_i(t)/w(t)$, i = 0, 1, 2, ..., m; $a \le t < b$. It is sufficient to prove the theorem for span $\{v_0, v_1, ..., v_m\}$. We choose a sequence $\{t_j\}$ in [a, b) with $\lim_{j \to \infty} t_j = b$. This sequence contains a subsequence $\{t_{j_k}\}$ such that $\lim_{k \to \infty} v_i(t_{j_k})$ exist for i = 0, ..., m.

We show that the limits do not depend on $\{t_j\}$. Assume that for some i_1 there exist two sequences $\{s_j\}$ and $\{r_j\}$ such that $\lim_{j\to\infty} v_{i_1}(s_j) = S < \lim_{j\to\infty} v_{i_1}(r_j) = R$. Since for some i_0 , $v_{i_0} = 1$ near b, $v_{i_1} - ((S + R)/2) v_{i_0}$ vanishes infinitely many times in contradiction to the fact that $\{v_i\}_{i=0}^m$ is a T-system. Thus we may extend v_i , i = 0, 1, ..., m to [a, b] and the extended functions are continuous on [a, b].

By [1], if Λ_m does not contain an *m*-dimensional T-subspace, $(v_0(a), v_1(a), ..., v_m(a))$ and $v_0(b), v_1(b), ..., v_m(b)$ are proportional, and thus by Theorem 1, Λ_m contains an (m - 1)-dimensional T-subspace.

References

2. R. ZIELKE, Alternation properties of Tchebyshev-systems and the existence of adjoined functions, J. Approximation Theory 10 (1974), 172–184.

^{1.} E. LAPIDOT, On complete Tchebycheff-systems, J. Approximation Theory, 23 (1978), 324-331.